This documentation is automatically generated by online-judge-tools/verification-helper
#include "treap/lazy_implicit_treap.hpp"
#ifndef LAZY_IMPLICIT_TREAP_HPP
#define LAZY_IMPLICIT_TREAP_HPP
#include "../random/xoshiro256starstar.hpp"
#include <array>
#include <cassert>
#include <chrono>
#include <initializer_list>
#include <type_traits>
#include <utility>
#include <vector>
template <typename S, typename Op, typename E, typename F, typename Mapping,
typename Composition, typename Id, typename Generator>
struct lazy_implicit_treap {
lazy_implicit_treap(Op op, E e, Mapping mapping, Composition composition,
Id id)
: op_(op), e_(e), mapping_(mapping), composition_(composition), id_(id),
gen_(static_cast<typename Generator::result_type>(
std::chrono::steady_clock::now().time_since_epoch().count())) {}
// Split into [0, pos), [pos, inf)
std::array<int, 2> split(int u, int pos) {
if (!~u) {
return {-1, -1};
}
push(u);
if (size(nodes_[u].children[0]) < pos) {
auto [left, right] = split(nodes_[u].children[1],
pos - size(nodes_[u].children[0]) - 1);
nodes_[u].children[1] = left;
return {update(u), right};
} else {
auto [left, right] = split(nodes_[u].children[0], pos);
nodes_[u].children[0] = right;
return {left, update(u)};
}
}
// Split into [0, pos[0]), [pos[0], pos[1]),
// ..., [pos[n-2], pos[n-1]), [pos[n-1], inf)
std::vector<int> split(int u, std::initializer_list<int> ilist) {
auto n = static_cast<int>(ilist.size());
assert(n > 0);
assert(~u);
std::vector<int> result(n + 1), pos(ilist);
result[0] = u;
for (auto i = n - 1; i >= 1; --i) {
pos[i] -= pos[i - 1];
}
for (auto i = 0; i < n; ++i) {
auto [left, right] = split(result[i], pos[i]);
result[i] = left;
result[i + 1] = right;
}
return result;
}
int merge(int u, int v) {
if (!~u || !~v) {
return ~u ? u : v;
}
if (nodes_[u].priority < nodes_[v].priority) {
push(v);
nodes_[v].children[0] = merge(u, nodes_[v].children[0]);
return update(v);
} else {
push(u);
nodes_[u].children[1] = merge(nodes_[u].children[1], v);
return update(u);
}
}
int merge(std::initializer_list<int> ilist) {
auto u = -1;
for (auto v : ilist) {
u = merge(u, v);
}
return u;
}
// Inserts value before pos
int insert(int u, int pos, const S &value) {
assert(0 <= pos && pos <= size(u));
auto v = new_node(value);
auto [left, right] = split(u, pos);
return merge({left, v, right});
}
int push_back(int u, const S &value) {
auto v = new_node(value);
return merge(u, v);
}
int new_node(const S &value) {
auto u = static_cast<int>(nodes_.size());
nodes_.emplace_back(value, id_(), gen_());
return u;
}
int erase(int u, int pos) {
assert(0 <= pos && pos < size(u));
auto v = split(u, {pos, pos + 1});
return merge(v[0], v[2]);
}
S get(int u, int pos) {
assert(~u && !~nodes_[u].parent);
assert(0 <= pos && pos < size(u));
while (~u) {
push(u);
if (size(nodes_[u].children[0]) < pos) {
pos -= size(nodes_[u].children[0]) + 1;
u = nodes_[u].children[1];
} else if (pos < size(nodes_[u].children[0])) {
u = nodes_[u].children[0];
} else {
break;
}
}
assert(~u);
return nodes_[u].value;
}
int set(int u, int pos, S value) {
assert(0 <= pos && pos < size(u));
auto v = split(u, {pos, pos + 1});
nodes_[v[1]].value = value;
nodes_[v[1]].subtree_sum = value;
return merge({v[0], v[1], v[2]});
}
int apply(int u, int pos, F f) { return apply(u, pos, pos + 1, f); }
int apply(int u, int l, int r, F f) {
assert(0 <= l && l <= r && r <= size(u));
auto v = split(u, {l, r});
all_apply(v[1], f);
return merge({v[0], v[1], v[2]});
}
S all_prod(int u) const { return ~u ? nodes_[u].subtree_sum : e_(); }
std::pair<int, S> prod(int u, int l, int r) {
auto v = split(u, {l, r});
auto result = all_prod(v[1]);
return {merge({v[0], v[1], v[2]}), result};
}
int reverse(int u) {
if (~u) {
nodes_[u].reversed ^= true;
}
return u;
}
int reverse(int u, int l, int r) {
assert(0 <= l && l <= r && r <= size(u));
auto v = split(u, {l, r});
reverse(v[1]);
return merge({v[0], v[1], v[2]});
}
int order_of_node(int u) {
assert(0 <= u && u < static_cast<int>(nodes_.size()));
auto propagate = [&](auto self, int x) -> void {
if (~x) {
self(self, nodes_[x].parent);
push(x);
}
};
propagate(propagate, u);
auto order = size(nodes_[u].children[0]);
for (; ~nodes_[u].parent; u = nodes_[u].parent) {
if (auto p = nodes_[u].parent; nodes_[p].children[1] == u) {
order += size(p) - size(u);
}
}
return order;
}
int get_root(int u) const {
assert(0 <= u && u < static_cast<int>(nodes_.size()));
while (~nodes_[u].parent) {
u = nodes_[u].parent;
}
return u;
}
void reserve(std::vector<int>::size_type n) { nodes_.reserve(n); }
int size(int u) const { return ~u ? nodes_[u].subtree_size : 0; }
template <typename Function> void for_each(int u, Function f) {
if (~u) {
push(u);
for_each(nodes_[u].children[0], f);
f(nodes_[u].value);
for_each(nodes_[u].children[1], f);
}
}
private:
int update(int u) {
if (!~u) {
return u;
}
nodes_[u].parent = -1;
nodes_[u].subtree_size = 1;
for (auto v : nodes_[u].children) {
if (~v) {
nodes_[v].parent = u;
nodes_[u].subtree_size += nodes_[v].subtree_size;
}
}
nodes_[u].subtree_sum =
~nodes_[u].children[0]
? op_(nodes_[nodes_[u].children[0]].subtree_sum, nodes_[u].value)
: nodes_[u].value;
nodes_[u].subtree_sum =
~nodes_[u].children[1]
? op_(nodes_[u].subtree_sum,
nodes_[nodes_[u].children[1]].subtree_sum)
: nodes_[u].subtree_sum;
return u;
}
void push(int u) {
if (!~u) {
return;
}
all_apply(nodes_[u].children[0], nodes_[u].lazy);
all_apply(nodes_[u].children[1], nodes_[u].lazy);
nodes_[u].lazy = id_();
if (nodes_[u].reversed) {
for (auto v : nodes_[u].children) {
if (~v) {
nodes_[v].reversed ^= true;
}
}
std::swap(nodes_[u].children[0], nodes_[u].children[1]);
nodes_[u].reversed = false;
}
}
void all_apply(int u, F f) {
if (~u) {
nodes_[u].value = mapping_(f, nodes_[u].value);
nodes_[u].subtree_sum = mapping_(f, nodes_[u].subtree_sum);
nodes_[u].lazy = composition_(f, nodes_[u].lazy);
}
}
struct node {
node(const S &value_, const F &lazy_,
typename Generator::result_type priority_)
: value(value_), subtree_sum(value_), lazy(lazy_),
priority(priority_) {}
S value;
S subtree_sum;
F lazy;
typename Generator::result_type priority;
bool reversed = false;
int parent = -1;
int subtree_size = 1;
std::array<int, 2> children{-1, -1};
};
Op op_;
E e_;
Mapping mapping_;
Composition composition_;
Id id_;
Generator gen_;
std::vector<node> nodes_;
};
template <typename Op, typename E, typename Mapping, typename Composition,
typename Id>
lazy_implicit_treap(Op op, E e, Mapping mapping, Composition composition, Id id)
-> lazy_implicit_treap<std::invoke_result_t<E>, Op, E,
std::invoke_result_t<Id>, Mapping, Composition, Id,
xoshiro256starstar>;
#endif // LAZY_IMPLICIT_TREAP_HPP
#line 1 "treap/lazy_implicit_treap.hpp"
#line 1 "random/xoshiro256starstar.hpp"
#line 1 "random/splitmix64.hpp"
#include <cstdint>
#include <limits>
struct splitmix64 {
public:
using result_type = std::uint64_t;
splitmix64(std::uint64_t seed = 0) : x(seed) {}
std::uint64_t operator()() {
std::uint64_t z = (x += 0x9e3779b97f4a7c15);
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
return z ^ (z >> 31);
}
static constexpr std::uint64_t min() {
return std::numeric_limits<std::uint64_t>::min();
}
static constexpr std::uint64_t max() {
return std::numeric_limits<std::uint64_t>::max();
}
private:
std::uint64_t x; // The state can be seeded with any value.
};
#line 5 "random/xoshiro256starstar.hpp"
#include <array>
#line 8 "random/xoshiro256starstar.hpp"
struct xoshiro256starstar {
public:
using result_type = std::uint64_t;
xoshiro256starstar(std::uint64_t seed = 0) {
splitmix64 g(seed);
for (auto &x : s) {
x = g();
}
}
std::uint64_t operator()() {
const std::uint64_t result = rotl(s[1] * 5, 7) * 9;
const std::uint64_t t = s[1] << 17;
s[2] ^= s[0];
s[3] ^= s[1];
s[1] ^= s[2];
s[0] ^= s[3];
s[2] ^= t;
s[3] = rotl(s[3], 45);
return result;
}
static constexpr std::uint64_t min() {
return std::numeric_limits<std::uint64_t>::min();
}
static constexpr std::uint64_t max() {
return std::numeric_limits<std::uint64_t>::max();
}
private:
static std::uint64_t rotl(const std::uint64_t x, int k) {
return (x << k) | (x >> (64 - k));
}
std::array<std::uint64_t, 4> s;
};
#line 6 "treap/lazy_implicit_treap.hpp"
#include <cassert>
#include <chrono>
#include <initializer_list>
#include <type_traits>
#include <utility>
#include <vector>
template <typename S, typename Op, typename E, typename F, typename Mapping,
typename Composition, typename Id, typename Generator>
struct lazy_implicit_treap {
lazy_implicit_treap(Op op, E e, Mapping mapping, Composition composition,
Id id)
: op_(op), e_(e), mapping_(mapping), composition_(composition), id_(id),
gen_(static_cast<typename Generator::result_type>(
std::chrono::steady_clock::now().time_since_epoch().count())) {}
// Split into [0, pos), [pos, inf)
std::array<int, 2> split(int u, int pos) {
if (!~u) {
return {-1, -1};
}
push(u);
if (size(nodes_[u].children[0]) < pos) {
auto [left, right] = split(nodes_[u].children[1],
pos - size(nodes_[u].children[0]) - 1);
nodes_[u].children[1] = left;
return {update(u), right};
} else {
auto [left, right] = split(nodes_[u].children[0], pos);
nodes_[u].children[0] = right;
return {left, update(u)};
}
}
// Split into [0, pos[0]), [pos[0], pos[1]),
// ..., [pos[n-2], pos[n-1]), [pos[n-1], inf)
std::vector<int> split(int u, std::initializer_list<int> ilist) {
auto n = static_cast<int>(ilist.size());
assert(n > 0);
assert(~u);
std::vector<int> result(n + 1), pos(ilist);
result[0] = u;
for (auto i = n - 1; i >= 1; --i) {
pos[i] -= pos[i - 1];
}
for (auto i = 0; i < n; ++i) {
auto [left, right] = split(result[i], pos[i]);
result[i] = left;
result[i + 1] = right;
}
return result;
}
int merge(int u, int v) {
if (!~u || !~v) {
return ~u ? u : v;
}
if (nodes_[u].priority < nodes_[v].priority) {
push(v);
nodes_[v].children[0] = merge(u, nodes_[v].children[0]);
return update(v);
} else {
push(u);
nodes_[u].children[1] = merge(nodes_[u].children[1], v);
return update(u);
}
}
int merge(std::initializer_list<int> ilist) {
auto u = -1;
for (auto v : ilist) {
u = merge(u, v);
}
return u;
}
// Inserts value before pos
int insert(int u, int pos, const S &value) {
assert(0 <= pos && pos <= size(u));
auto v = new_node(value);
auto [left, right] = split(u, pos);
return merge({left, v, right});
}
int push_back(int u, const S &value) {
auto v = new_node(value);
return merge(u, v);
}
int new_node(const S &value) {
auto u = static_cast<int>(nodes_.size());
nodes_.emplace_back(value, id_(), gen_());
return u;
}
int erase(int u, int pos) {
assert(0 <= pos && pos < size(u));
auto v = split(u, {pos, pos + 1});
return merge(v[0], v[2]);
}
S get(int u, int pos) {
assert(~u && !~nodes_[u].parent);
assert(0 <= pos && pos < size(u));
while (~u) {
push(u);
if (size(nodes_[u].children[0]) < pos) {
pos -= size(nodes_[u].children[0]) + 1;
u = nodes_[u].children[1];
} else if (pos < size(nodes_[u].children[0])) {
u = nodes_[u].children[0];
} else {
break;
}
}
assert(~u);
return nodes_[u].value;
}
int set(int u, int pos, S value) {
assert(0 <= pos && pos < size(u));
auto v = split(u, {pos, pos + 1});
nodes_[v[1]].value = value;
nodes_[v[1]].subtree_sum = value;
return merge({v[0], v[1], v[2]});
}
int apply(int u, int pos, F f) { return apply(u, pos, pos + 1, f); }
int apply(int u, int l, int r, F f) {
assert(0 <= l && l <= r && r <= size(u));
auto v = split(u, {l, r});
all_apply(v[1], f);
return merge({v[0], v[1], v[2]});
}
S all_prod(int u) const { return ~u ? nodes_[u].subtree_sum : e_(); }
std::pair<int, S> prod(int u, int l, int r) {
auto v = split(u, {l, r});
auto result = all_prod(v[1]);
return {merge({v[0], v[1], v[2]}), result};
}
int reverse(int u) {
if (~u) {
nodes_[u].reversed ^= true;
}
return u;
}
int reverse(int u, int l, int r) {
assert(0 <= l && l <= r && r <= size(u));
auto v = split(u, {l, r});
reverse(v[1]);
return merge({v[0], v[1], v[2]});
}
int order_of_node(int u) {
assert(0 <= u && u < static_cast<int>(nodes_.size()));
auto propagate = [&](auto self, int x) -> void {
if (~x) {
self(self, nodes_[x].parent);
push(x);
}
};
propagate(propagate, u);
auto order = size(nodes_[u].children[0]);
for (; ~nodes_[u].parent; u = nodes_[u].parent) {
if (auto p = nodes_[u].parent; nodes_[p].children[1] == u) {
order += size(p) - size(u);
}
}
return order;
}
int get_root(int u) const {
assert(0 <= u && u < static_cast<int>(nodes_.size()));
while (~nodes_[u].parent) {
u = nodes_[u].parent;
}
return u;
}
void reserve(std::vector<int>::size_type n) { nodes_.reserve(n); }
int size(int u) const { return ~u ? nodes_[u].subtree_size : 0; }
template <typename Function> void for_each(int u, Function f) {
if (~u) {
push(u);
for_each(nodes_[u].children[0], f);
f(nodes_[u].value);
for_each(nodes_[u].children[1], f);
}
}
private:
int update(int u) {
if (!~u) {
return u;
}
nodes_[u].parent = -1;
nodes_[u].subtree_size = 1;
for (auto v : nodes_[u].children) {
if (~v) {
nodes_[v].parent = u;
nodes_[u].subtree_size += nodes_[v].subtree_size;
}
}
nodes_[u].subtree_sum =
~nodes_[u].children[0]
? op_(nodes_[nodes_[u].children[0]].subtree_sum, nodes_[u].value)
: nodes_[u].value;
nodes_[u].subtree_sum =
~nodes_[u].children[1]
? op_(nodes_[u].subtree_sum,
nodes_[nodes_[u].children[1]].subtree_sum)
: nodes_[u].subtree_sum;
return u;
}
void push(int u) {
if (!~u) {
return;
}
all_apply(nodes_[u].children[0], nodes_[u].lazy);
all_apply(nodes_[u].children[1], nodes_[u].lazy);
nodes_[u].lazy = id_();
if (nodes_[u].reversed) {
for (auto v : nodes_[u].children) {
if (~v) {
nodes_[v].reversed ^= true;
}
}
std::swap(nodes_[u].children[0], nodes_[u].children[1]);
nodes_[u].reversed = false;
}
}
void all_apply(int u, F f) {
if (~u) {
nodes_[u].value = mapping_(f, nodes_[u].value);
nodes_[u].subtree_sum = mapping_(f, nodes_[u].subtree_sum);
nodes_[u].lazy = composition_(f, nodes_[u].lazy);
}
}
struct node {
node(const S &value_, const F &lazy_,
typename Generator::result_type priority_)
: value(value_), subtree_sum(value_), lazy(lazy_),
priority(priority_) {}
S value;
S subtree_sum;
F lazy;
typename Generator::result_type priority;
bool reversed = false;
int parent = -1;
int subtree_size = 1;
std::array<int, 2> children{-1, -1};
};
Op op_;
E e_;
Mapping mapping_;
Composition composition_;
Id id_;
Generator gen_;
std::vector<node> nodes_;
};
template <typename Op, typename E, typename Mapping, typename Composition,
typename Id>
lazy_implicit_treap(Op op, E e, Mapping mapping, Composition composition, Id id)
-> lazy_implicit_treap<std::invoke_result_t<E>, Op, E,
std::invoke_result_t<Id>, Mapping, Composition, Id,
xoshiro256starstar>;